Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiologyopen ; 10(2): e1183, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33970536

RESUMO

In recent years, the fermented milk product kefir has been intensively studied because of its health benefits. Here, we evaluated the microbial consortia of two kefir samples, from Escarcega, Campeche, and Campeche (México). We considered a functional comparison between both samples, including fungal and bacterial inhibition; second, we applied shotgun metagenomics to assess the structure and functional diversity of the communities of microorganisms. These two samples exhibited antagonisms against bacterial and fungal pathogens. Bioactive polyketides and nonribosomal peptides were identified by LC-HRMS analysis. We also observed a high bacterial diversity and an abundance of Actinobacteria in both kefir samples, and a greater abundance of Saccharomyces species in kefir of Escarcega than in the Campeche kefir. When the prophage compositions were evaluated, the Campeche sample showed a higher diversity of prophage sequences. In Escarcega, we observed a prevalence of prophage families that infect Enterobacteria and Lactobacillus. The sequences associated with secondary metabolites, such as plipastatin, fengycin, and bacillaene, and also bacteriocins like helveticin and zoocin, were also found in different proportions, with greater diversity in the Escarcega sample. The analyses described in this work open the opportunity to understand the microbial diversity in kefir samples from two distant localities.


Assuntos
Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Kefir/microbiologia , Metagenoma , Animais , Bactérias/classificação , Biodiversidade , Produtos Fermentados do Leite/microbiologia , DNA Bacteriano , DNA Fúngico , Fermentação , Microbiologia de Alimentos , Fungos/classificação , Metagenômica/métodos , México , Microbiota , Leite/microbiologia , Peptídeos/farmacologia , Policetídeos/farmacologia , Prófagos/genética , Metabolismo Secundário
2.
PLoS One ; 15(8): e0237135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32822422

RESUMO

DNA-binding Transcription Factors (TFs) play a central role in regulation of gene expression in prokaryotic organisms, and similarities at the sequence level have been reported. These proteins are predicted with different abundances as a consequence of genome size, where small organisms contain a low proportion of TFs and large genomes contain a high proportion of TFs. In this work, we analyzed a collection of 668 experimentally validated TFs across 30 different species from diverse taxonomical classes, including Escherichia coli K-12, Bacillus subtilis 168, Corynebacterium glutamicum, and Streptomyces coelicolor, among others. This collection of TFs, together with 111 hidden Markov model profiles associated with DNA-binding TFs collected from diverse databases such as PFAM and DBD, was used to identify the repertoire of proteins putatively devoted to gene regulation in 1321 representative genomes of Archaea and Bacteria. The predicted regulatory proteins were posteriorly analyzed in terms of their genomic context, allowing the prediction of functions for TFs and their neighbor genes, such as genes involved in virulence, enzymatic functions, phosphorylation mechanisms, and antibiotic resistance. The functional analysis associated with PFAM groups showed diverse functional categories were significantly enriched in the collection of TFs and the proteins encoded by the neighbor genes, in particular, small-molecule binding and amino acid transmembrane transporter activities associated with the LysR family and proteins devoted to cellular aromatic compound metabolic processes or responses to drugs, stress, or abiotic stimuli in the MarR family. We consider that with the increasing data derived from new technologies, novel TFs can be identified and help improve the predictions for this class of proteins in complete genomes. The complete collection of experimentally characterized and predicted TFs is available at http://web.pcyt.unam.mx/EntrafDB/.


Assuntos
Archaea/genética , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Escherichia coli K12/genética , Fatores de Transcrição/genética , Archaea/patogenicidade , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA Arqueal/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli K12/patogenicidade , Regulação da Expressão Gênica em Archaea , Regulação Bacteriana da Expressão Gênica , Genoma Arqueal , Genoma Bacteriano , Ligação Proteica , Fatores de Transcrição/metabolismo , Virulência/genética
3.
Genes (Basel) ; 10(11)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694288

RESUMO

Intermediate-salinity environments are distributed around the world. Here, we present a snapshot characterization of two Peruvian thalassohaline environments at high altitude, Maras and Acos, which provide an excellent opportunity to increase our understanding of these ecosystems. The main goal of this study was to assess the structure and functional diversity of the communities of microorganisms in an intermediate-salinity environment, and we used a metagenomic shotgun approach for this analysis. These Andean hypersaline systems exhibited high bacterial diversity and abundance of the phyla Proteobacteria, Bacteroidetes, Balneolaeota, and Actinobacteria; in contrast, Archaea from the phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota were identified in low abundance. Acos harbored a more diverse prokaryotic community and a higher number of unique species compared with Maras. In addition, we obtained the draft genomes of two bacteria, Halomonas elongata and Idiomarina loihiensis, as well as the viral genomes of Enterobacteria lambda-like phage and Halomonas elongata-like phage and 27 partial novel viral halophilic genomes. The functional metagenome annotation showed a high abundance of sequences associated with detoxification, DNA repair, cell wall and capsule formation, and nucleotide metabolism; sequences for these functions were overexpressed mainly in bacteria and also in some archaea and viruses. Thus, their metabolic profiles afford a decrease in oxidative stress as well as the assimilation of nitrogen, a critical energy source for survival. Our work represents the first microbial characterization of a community structure in samples collected from Peruvian hypersaline systems.


Assuntos
Metagenômica/métodos , Microbiota/genética , Microbiota/fisiologia , Tolerância ao Sal/genética , Actinobacteria/genética , Altitude , Archaea/genética , Bactérias/genética , Bacteroidetes/genética , Biodiversidade , Euryarchaeota/genética , Peru , Filogenia , Proteobactérias/genética , RNA Ribossômico 16S/genética , Salinidade , Vírus/genética
4.
Life (Basel) ; 8(4)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30248960

RESUMO

In recent years, there has been a large increase in the amount of experimental evidence for diverse archaeal organisms, and these findings allow for a comprehensive analysis of archaeal genetic organization. However, studies about regulatory mechanisms in this cellular domain are still limited. In this context, we identified a repertoire of 86 DNA-binding transcription factors (TFs) in the archaeon Pyrococcus furiosus DSM 3638, that are clustered into 32 evolutionary families. In structural terms, 45% of these proteins are composed of one structural domain, 41% have two domains, and 14% have three structural domains. The most abundant DNA-binding domain corresponds to the winged helix-turn-helix domain; with few alternative DNA-binding domains. We also identified seven regulons, which represent 13.5% (279 genes) of the total genes in this archaeon. These analyses increase our knowledge about gene regulation in P. furiosus DSM 3638 and provide additional clues for comprehensive modeling of transcriptional regulatory networks in the Archaea cellular domain.

5.
Comput Biol Chem ; 58: 93-103, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26094112

RESUMO

Motivated by the experimental evidences accumulated in the last ten years and based on information deposited in RegulonDB, literature look up, and sequence analysis, we analyze the repertoire of 304 DNA-binding Transcription factors (TFs) in Escherichia coli K-12. These regulators were grouped in 78 evolutionary families and are regulating almost half of the total genes in this bacterium. In structural terms, 60% of TFs are composed by two-domains, 30% are monodomain, and 10% three- and four-structural domains. As previously noticed, the most abundant DNA-binding domain corresponds to the winged helix-turn-helix, with few alternative DNA-binding structures, resembling the hypothesis of successful protein structures with the emergence of new ones at low scales. In summary, we identified and described the characteristics associated to the DNA-binding TF in E. coli K-12. We also identified twelve functional modules based on a co-regulated gene matrix. Finally, diverse regulons were predicted based on direct associations between the TFs and potential regulated genes. This analysis should increase our knowledge about the gene regulation in the bacterium E. coli K-12, and provide more additional clues for comprehensive modelling of transcriptional regulatory networks in other bacteria.


Assuntos
Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Regulon
6.
Bioengineered ; 4(4): 236-43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23680857

RESUMO

It has been documented that bacteria from the Burkholderia genera produce different kinds of compounds that inhibit plant pathogens, however in Burkholderia tropica, an endophytic diazotrophic and phosphate-solubilizing bacterium isolated from a wide diversity of plants, the capacity to produce antifungal compounds has not been evaluated. In order to expand our knowledge about Burkholderia tropica as a potential biological control agent, we analyzed 15 different strains of this bacterium to evaluate their capacities to inhibit the growth of four phytopathogenic fungi, Colletotrichum gloeosporioides, Fusarium culmorum, Fusarium oxysporum and Sclerotium rolffsi. Diverse analytical techniques, including plant root protection and dish plate growth assays and gas chromatography-mass spectroscopy showed that the fungal growth inhibition was intimately associated with the volatile compounds produced by B. tropica and, in particular, two bacterial strains (MTo293 and TTe203) exhibited the highest radial mycelial growth inhibition. Morphological changes associated with these compounds, such as disruption of fungal hyphae, were identified by using photomicrographic analysis. By using gas chromatography-mass spectroscopy technique, 18 volatile compounds involved in the growth inhibition mechanism were identified, including α-pinene and limonene. In addition, we found a high proportion of bacterial strains that produced siderophores during growth with different carbon sources, such as alanine and glutamic acid; however, their roles in the antagonism mechanism remain unclear.


Assuntos
Burkholderia/química , Fungos/efeitos dos fármacos , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia , Agentes de Controle Biológico , Colletotrichum/efeitos dos fármacos , Fusarium/efeitos dos fármacos
7.
Comput Biol Chem ; 35(6): 341-6, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22099630

RESUMO

Archaea represent an important and vast domain of life. This cellular domain includes a large diversity of organisms characterized as prokaryotes with basal transcriptional machinery similar to eukarya. In this work we explore the most recent findings concerning the transcriptional regulatory organization in archaeal genomes since the perspective of the DNA-binding transcription factors (TFs), such as the high proportion of archaeal TFs homologous to bacteria, the apparent deficit of TFs, only comparable to the proportion of TFs in parasites or intracellular pathogenic bacteria, suggesting a deficit in this class of proteins. We discuss an appealing hypothesis to explain the apparent deficit of TFs in archaea, based on their characteristics, such as their small length sizes. The hypothesis suggests that a large fraction of these small-sized TFs could supply the deficit of TFs in archaea, by forming different combinations of monomers similar to that observed in eukaryotic transcriptional machinery, where a wide diversity of protein-protein interactions could act as mediators of regulatory feedback, indicating a chimera of bacterial and eukaryotic TFs' functionality. Finally, we discuss how global experiments can help to understand in a global context the role of TFs in these organisms.


Assuntos
Archaea/genética , Regulação da Expressão Gênica em Archaea/genética , Genoma Arqueal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...